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Computation of Genetic Contributions from Pedigrees 
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Summary. A simple procedure is outlined by which genetic contributions of individuals to later generations can be 
estimated. The method, which involves simple matrix operations, is well suited to automatic computation. 

In pedigreed populations it is possible to estimate, 
by  analyses of the pedigrees, what  proportion of the 
genes in the population have been derived from any 
specific ancestor. Study of changes in proportions of 
genes has proved useful in the interpretat ion of 
genetic effects of selection, as shown by  James  and 
McBride (1958), James  (t962 a, b) and Jones (1969a, 
b). 

The proportion of genes in a population which has 
been derived from a particular ancestor m a y  be com- 
puted by  tracing pedigrees of all individuals, and for 
each individual computing the proport ionate genetic 
contribution of each ancestor as the fraction of 
pedigree lines tracing back to tha t  ancestor. For 
each ancestor these proportions can be averaged over 
all individuals to give the ancestor 's  proportion of 
genes in the whole population. This is a tedious 
method, especially if extended over m a n y  gene- 
rations. Maruyama and Yasuda (t970) have outlined 
another  method of calculating genetic contributions, 
but  it is not convenient for data  from selection lines. 
The method to be described has proved very suitable 
for such data. 

Consider two successive generations, t and t + t, 
in a population with distinct generations. Then the 
proportion of genes in a member  of generation t + 1 
which are direct descendants of genes carried by  a 
member  of generation t is t/2, if the individuals are 
parent  and offspring, zero otherwise. If selfing is 
possible the fraction is uni ty for progeny produced 
by  selfing. These are the probabilities tha t  a random 
gene from the generation t + t individual is directly 
descended from a gene carried by  the generation t 
individual. If  a more formal title than  proportion of 

:genes is preferred, such probabilities could be named 
eoeHicients o/descent. These probabilities are not di- 
rectly related to co-ancestries or inbreeding coeffi- 
cients and may  be zero for closely related individuals, 
such as full sibs. Only direct descent is involved. 

If there are n(t) members  of generation t and 
n (t + t) of generation t + t, the proportions of 
genes can be arrayed in a matr ix  D (t, t + 1) with 
n(t) rows and n (t + t) columns, where the element 
Dii(t, t + t) is the probabil i ty tha t  a random gene 

from the ]th member  of generation t + I is descended 
from a gene carried by  the i th member  of generation t. 
The columns of this descent matrix all sum to unity. 

In the same way a descent matr ix  D (t + t, t + 2) 
may  be defined connecting generations t + I and 
t + 2. Similarly, a matr ix  D (t, t + 2) may  be defined 
connecting generations t and t + 2, the element 
Dq(t, t + 2) being the probabil i ty tha t  a random 
gene from the fth member  of generation t + 2 is 
descended from a gene carried by  the i th member  
of generation t. The chance tha t  a random gene in 
the ]th member  of generation t + 2 is descended 
from the i th member  of generation t through the kth 
member  of generation t + t is D,k (t, t + t) Dkj (t + 1, 
t + 2). I t  then follows that  

n(t 4-t) 
Dii(t, t +  2) = ~ Di~(t, t +  l) Oki(t + t, t + 2 ) .  

k = l  

Since this is the matr ix  multiplication rule, the result 
can be written in matr ix  notat ion as 

D ( t , t + 2 )  = D ( t , t +  l) D(t + 1, t + 2 ) .  
This result may  clearly be extended for as many  
generations as required. Thus, for a period of u gene- 
rations, 

D(t,t +u)  = D ( t , t +  t ) D ( t +  l , t +  2 ) . . .  
. . . O ( t  + u -- l, t + u) = 

= D ( t , t  + u - -  l ) D ( t + u - -  l, t + u ) .  

These matrices give the proportions of genes in 
individuals. To obtain proportions in the population 
in generation t + u the rows are summed and each 
row sum is divided by  the total  of row sums. The 
total  of row sums is clearly n (t + u) since total of 
row sums = total  of column sums = n (t + u) since 
there are n (t + u) columns each summing to unity. 
If V (t + u) is defined as a column vector of n (t + u) 
elements, each of which is 1In (t + u), and G(t, t + u) 
is defined as a column vector of n(t) elements which 
are proportions of genes from members  of generation t 
in the population at generation t + u, then 

G ( t , t + u )  = D ( t , t + u )  V ( t + u ) .  

A reduct ion in computat ion can be achieved by  
w o r k i n g  with matings rather  than individuals as 
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units. This is especially so with equal numbers  of 
males and females, since a mat r ix  based on mat ings  
will then have half the numbers  of rows and  columns 
used in a mat r ix  based on individuals.  In  a ma t ing  
descent matr ix ,  Dii (t, t + u) is the probabi l i ty  t ha t  
a gene taken at r andom from mat ing  ~' in generat ion 
t + u is descended f rom a gene carried by  mat ing  i 
in generat ion t. Thus  D,i (t, t + 1) is zero if nei ther  
member  of [mating j in generat ion t + t is a p rogeny  
of ma t ing  i in generat ion t; is one-half if one is bu t  
the other  is not  ; and is un i ty  if bo th  are, i. e. ma t ing  
j of generat ion t + t is of full sibs. Wi th  this defi- 
nit ion all the preceding results app ly  to  ma t ing  
descent matrices.  I t  should be noted t h a t  cont r ibut -  
ions from generat ion t mat ings  are identical  with 
contr ibut ions  f rom generat ion t + t families, since 
genes in a generat ion t + t family  are all con t r ibu ted  
by  a generat ion t mating.  

Usual ly  one 's  object  is to t race changes in gene 
propor t ions  f rom members  of generat ion t over a pe- 
riod of u generations. One then finds D (t, t + 1), 
next  D (t + t, t + 2) and hence D (t, t + 2). Next  
one finds D ( t + 2 ,  t + 3 )  whence D ( t , t  + 3 )  = 

D ( t , t +  2) D ( t + 2 ,  t + 3 )  and so on. If  one is 
interested in which ancestors f rom previous gene- 
rat ions have cont r ibu ted  i m por t a n t l y  to generat ion t, 
the process is reversed. One begins with D (t - -  1, t), 
then D (t - -  2, t - -  1) and so finds D (t - -  2, t) = 
= D (t - -  2, t - -  t) D (t --  t, t), and so on. 

I t  is normal ly  best  to use mat ing  descent matr ices  
as a basic method,  since this reduces mat r ix  size and 
comput ing  time, If  a male is ma ted  to several 
females his tota l  contr ibut ion can be found b y  sum- 
ming over all mat ings  involving him and dividing by  2, 
since he contr ibutes  only  half the genes in each mat -  
ing. I t  is of course possible to s tar t  and finish at any  
points  in the sequence of generations.  

I t  is often useful to compute  gene propor t ions  for 
some stage of the lite cycle o ther  than  at mat ing,  
such as at  sexual m a t u r i t y  before artificial selection 
is practised. If  W ( t  + u) is a column vector  of 
n (r + u) elements whose /'th element is the number  
of p rogeny  of the j th mat ing  of generat ion t + u 

which are present at  the stage in question, then the 
propor t ions  of genes in the popula t ion at t ha t  stage 
are given by  the vec tor  D ( t , t + u )  W ( t + u ) / w ,  
where w is the sum of the elements in the  n(t) rows 
of the vec tor  D (t, t -t- u) W (t -? u), or equivalent ly  
the sum of the elements of W (t + u). Several stages 
in the life cycle m a y  be t rea ted  by  using several W 
vectors.  

The me thod  can be adap ted  to deal with sex- 
l inked genes. If  the male is he terogamet ic  it mus t  
get  its X chromosome from its dam. Hence prob- 
abilities in the D (t, t + t) mat r ix  are 0 for sire and  
son, t for dam and son, 1/2 for sire and daughter ,  
1/2 for dam and daughter ,  and 0 otherwise. If  one 
were dealing with sex linked genes, sexes would 
p robab ly  be t rea ted  separate ly  and analysis with 
mat ings  as units  would not  be considered. 

I t  is possible to  use this procedure  with popu-  
lations in which generat ions overlap, t hough  perhaps 
at the expense of ve ry  large matrices.  An individual  
present at  bo th  t imes t and t + t would be included 
in bo th  rows and columns of the D (t, t + t) matr ix,  
with a probabi l i ty  of un i ty  for its coefficient of 
descent f rom itself. 

The const ruct ion of the D (t, t + t) matr ices f rom 
records of parents  of individuals  involved,  and the 
other  mat r ix  operations,  are easily set up in a com- 
puter  program.  
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